Bluesky Network Data Visualisation

Candidate Number: 1073375

| declare that, except where otherwise indicated, this mini-
project is entirely my own work, and that it has not been
previously submitted and/or assessed and is not due to be
submitted in its entirety or in part for any other course,
module or assignment

Bluesky Network Data Visualisation

User: 5003

Followers within
displayed graph
mFollowers outside
isplayed grapl
displayed graph
50

0
Followers Following

Number of Followers

50,000 100,000

My project aims to provide a visualisation of the network data from the Bluesky social
media platform. Bluesky has a somewhat decentralised design, but is otherwise similar to
X/Twitter, and has risen in popularity over the last few months. My project aims to display
the data surrounding two subsets of the overall dataset — the most followed users in the
platform, and the users with the earliest posts on the platform. It does this by showing an
overall representation of the selected subset in the right view, and showing more detailed
information on the currently selected node in the left view. This project is intended for a
casual audience, who would like to see the connections between the users with the most
followers and the users who posted the earliest in the dataset.

The Data

Source: Failla, A., & Rossetti, G. (2024). Bluesky Social Dataset [Data set]. In Plos One.
Zenodo. https://doi.org/10.5281/zen0do0.14258401

https://zenodo.org/records/14258401

Domain-specific description: The dataset as a whole consists of all data related to the
users in the dataset from before March 21 2024, and all data related to the various
custom feeds available in Bluesky at that time. The data used in my project initially
consisted of a list of every follow between two users on the platform, and a table of every
post made on the platform, alongside all the data related to that post like the number of
likes, root thread node, date posted, etc. The final dataset used in the project is the total
likes for each user, their followers inside the relevant subset, and the number of followers
outside that subset.

Abstract description: The dataset used in the project initially consists of a join between a
network dataset and a table dataset. The network dataset consists of two data types:
items, represented by a unique numerical number; and links, represented by a pair of
numbers. The table dataset contains a variety of data types, including the number used as
a primary key for each item, a number used as a foreign key to connect to the network
dataset, and various attributes about each post.

In the pre-processed data used in the project, the dataset consists of a table where each
item represents a user, alongside various attributes related to that user and a list of every
user in our derived subset that follows the specified user.

Pre-processing: The pre-processing required for this project was extensive, with the full
dataset taking up over 180GB on my computer once it was decompressed. The majority of
the pre-processing was done in Python, with a small amount done dynamically in
JavaScript while the program is running. The pre-processing consisted of first converting
the list of follow relations into a more useful dictionary format, and then deriving a list of the
top 500 most followed users. A list of the 500 users with the earliest posts was also derived
from the post data, and then their follow relations were extracted from the dictionary. For
both subsets of the data, the follow relations were then trimmed to only include the users
in that subset, with a count being maintained of all eliminated followers. The total number
of likes each user had was also derived from the post data. Later in the project, | also
derived a dictionary of every person who is followed by the users in our subsets. All
relevant data was then converted to the JSON format and included in the data
visualisation. Some pre-processing is done in the JavaScript to dynamically reduce the
size of the graph further.

https://doi.org/10.5281/zenodo.14258401
https://zenodo.org/records/14258401

Goals and Tasks

Domain-specific tasks:

1. Compare the follower graph of the most-followed users with the graph of the earliest
users to post on the platform, and change the size of the subset being shown.

2. Browse the various users included in the most-followed users or earliest users, and
see relevant information about that user like number of followers, and total likes on all
their posts.

3. Compare the number of followers a user has to the number of people followed by that
user, both inside and outside of the shown graph.

4. See how many followers each user has, alongside which other users are followed by
that user, and compare that to other users in the graph.

The attributes being visualised in this project are the following:
* The subset of the data being viewed (both the category of the subset and its size)
* The number of followers that a user has outside of the shown graph
* The number of followers that a user has inside that graph
* The number of people the user follows outside the graph
* The number of people the user follows inside the graph
* The total number of likes a user has gained on all their posts.

Overall, the aim of the visualisation is to allow the user to compare the social graphs of the
two subsets by exploring the data surrounding each graph.

Abstract description of tasks:
1. Compare two subsets of a larger dataset, and modify the size of those subsets.

2. Explore the graph of the items in the various subsets of the dataset, and view the
attributes related to each node.

3. Compare the number of incoming and outgoing links that each node in the network
data has, both within our subset and outside of it.

4. Provide the ability for the user to discover and enjoy information about the different
users and how they connect to each other via the network data.

There is also the capability for the visualisation to be used to search for certain items, such
as the item with the most incoming links, or to locate a certain item if its primary key (user
ID) is already known.

There is also a degree of summarisation done within the graph, and it should be possible
to get a sense of the data surrounding followers by looking at the network data without any
user interaction.

The main target of the visualisation is to show the topology of the network data, alongside
showing various trends within the data.

Visualisation Design

View One: Force Directed Graph

Description:

A graph representation of network data, where the nodes are mapped to circles and the
links are mapped to lines between the circles. Each node is given a certain “charge”, and
each link is given a certain “elasticity”. The display is then iteratively simulated according
to the forces of repulsion and attraction present on each node, resulting in an animated
display that eventually reaches an equilibrium. The size and colour of the circles are
determined by the data related to each node, with a legend being shown to explain the
colour scheme. In my project, the nodes represent a Bluesky user, the links represent one
user following the other, and the size and colour of the node both encode the number of
followers the user has.

Interactivity:
There are 6 different interactions programmed into the visualisation:

» Drag: The nodes are able to be dragged around the screen, updating the forces on
all the other nodes accordingly. This allows the user to change the arrangement of
the nodes however they would like.

* Click: Upon being clicked, that node is selected, and becomes the focus of the
second view of the visualisation. The node’s colour is also changed to signify it has
been selected. This allows the user to select a node to gain more information about
it.

* Hover: When hovering over a node, a different selection type is applied, where the
node is given a larger outline of a different colour, and all links to the node are
coloured orange. The hover interaction is coordinated across both views, so
hovering over a user on either view selects that user as the hover focus for both. A
tooltip also shows the user ID.

* Scroll: You can use the scroll wheel to zoom in and out of the graph.

» Slider: This applies a semantic zoom to the dataset, cutting down the number of
nodes being simulated to the top n many nodes.

* Drop-down menu: This menu changes which dataset is currently selected. This
could be considered either a semantic zoom or a type of constrained navigation.

Rationale:

This view is designed to give the user an overview of the data available in the
visualisation. It is difficult to find a stable and visually pleasing representation of the entire
graph, so a force-based simulation, one that the user could interact with, was chosen to be
the idiom for the graph overview. The nodes are coloured according to the Viridis colour
palette, which ensures that the graph remains colour-blind friendly, and the accent colour
for the links is orange for the same reason. Size was chosen to encode the number of
incoming links a node has, as displaying that is the primary task of this view. However, the
radius of the circle is proportional to the square root of the number of incoming links, as
the size encoding is one of area, not length. An attempt to make the colour channel
encode a user’s total number of likes proved only to be confusing, so colour instead
redundantly encodes the number of followers a node has.

Click was chosen as the primary selection idiom as hover resulted in too many changes to
the other view, which looked jarring. Hovering is generally best suited to browsing tasks,
and so is primarily used to help present connections and identifying data. The slider is
present as the graph is too dense for a simulation of all 500 nodes in the dataset to be
feasible on most machines — a default of 100 was set as that was both a reasonable
number of nodes to visualise, and wasn’t too taxing on my machine. Furthermore, the
semantic zoom/filter this provides helps to reduce the complexity of the visualisation, as
the simulation with all 500 nodes is near incomprehensible. The drop-down menu was
included to allow the comparison of the two subsets without having to simulate them both
simultaneously.

View Two: Novel Visualisation/ Spider Graph

User: 5003

Followers within
displayed graph
™ Follow utside
isplayed grap|
displayed h
50

0
Followers Following

Description and Analysis

This view allows the user to see more detailed information about a node of their choosing.
It consists of a circle containing the user ID and a stacked bar chart, and multiple lines, or
'legs’, extending from the circle. For the stacked bar chart, the marks are rectangles, and
the relevant channels are the x position, height, and colour. Each rectangle encodes
information about a certain subset of links connected to the selected node. The x position
encodes whether the rectangle represents the number of people the selected user follows,
or the number of people following that user. The colour encodes a different category, which
is whether or not the links it represents are inside or outside of the displayed graph. The
height encodes the number of links in that rectangle’s category. Overall, it is a bar chart
where height encodes the number of users that the selected user follows or is followed by,
and the different stacks represent the number of links inside or outside the graph in that
category.

For the ‘legs’, the marks are the individual lines extending from the circle. The channels of
position and tilt are used to differentiate each leg, as each leg represents a different node
in the dataset. The channels that each node’s data is encoded through are width/thickness
and colour. Both channels encode the same data, which is the number of followers that the
user has.

Interactivity

* Hover: Two different things are encoded via hover in this view: the display of a
tooltip, and the emphasis of a given ‘leg’. A tooltip is displayed when the user
hovers over the stacked bar chart, and displays all the available information about
the selected user, including the total number of likes their posts have, and the
number of people they follow or are followed by. A tooltip is also displayed when
hovering over one of the legs, showing the user’s ID alongside some information on
the user represented by that leg. Hovering over one of the legs also increases the

width of that leg, alongside emphasising that node in the other view, making this a
type of selection interaction.

* Click: Clicking on a leg is a selection interaction which changes the focus of the
visualisation to the user represented by that leg. This selection is also linked to the
click selection in the other view.

Rationale

This was initially intended to be a combination of the small-multiples/ glyph-map idiom and
a network idiom, but the combination of the two proved to be too cluttered for a single
view. A stacked bar chart was chosen to be the central glyph, as it allows both the
proportion of in-graph and outside of graph followers to be shown. It also allows for a
comparison of the number of people that the user follows and is following. Unfortunately,
all the users shown in the dataset tend to follow significantly less people than they are
followed by, so the comparison between bars isn’t always possible to achieve visually. This
is the rationale behind having a tooltip show the exact user data regardless of which bar
the user hovers over.

The channel of tilt is used to differentiate different nodes, as it is difficult to encode other
information with it, but every mark is still easily differentiable when used in this way.
Redundantly encoding line width alongside colour was done because the lines were too
thin for the colours to be differentiable from one another, and so thicker lines are more
easily distinguished, and thinner lines are less likely to be the priority of any analysis.
Either way, the tooltip also allows the user to see the information relevant to that leg. The
colour scheme used for the legs is the same one used for the other view, and is a colour-
blind friendly palette.

Overall, this view is appropriate for the tasks involving individual users’ data, as it acts as a
more focused view on a single user. However, it still displays the network data in a way
that is clear and relevant to the user.

Visualisation Principles

There are a number of reasons why | believe my novel visualisation is more suited to the
tasks present than any of the encodings given in the course materials. It allows the user to
see detailed information about a given node, while also displaying all the links from that
node in a straightforward manner. It encodes data using a variety of channels, and saves
the more discriminable channels for the more important data. None of the network idioms
shown in the course allow a large amount of information to be displayed per node (unless
you use a tooltip), and so they wouldn’t work well with the tasks the novel visualisation is
built for.

All of the other encodings provided in the course materials do not allow for the network
data to be represented in a meaningful way, so navigating from one node to another would
require using a different view. In the case of my visualisation, this would be particularly
difficult as the graph is fairly dense, so switching from node to node would prove to be
rather fiddly.

A stacked bar chart also appears to be the best encoding for the individual node data.
Since there is such an emphasis on the proportion of incoming links that are from inside
the graph to ones that are outside the graph, a visualisation that allows the user to view
proportions is necessary. A pie chart would accomplish this task, but then there would be
no encoding for the total number of incoming links outside of just writing the number.
Furthermore, there would be no clear way to encode the number of outgoing links from
that node.

A scatter graph could somewhat encode the two categories of incoming links, but then
finding the total number of incoming links would be difficult. Furthermore, a scatter graph
requires two continuous axes, and one of our axes is discrete. This problem would be
even worse with a line graph, as the lines between nodes would violate the
expressiveness principle.

A heatmap would only encode the data in terms of colour, which is less discriminable than
aligned length.

The other idioms shown in the course materials require more data than an individual node
has in our dataset, and so wouldn’t work well for our visualisation.

Furthermore, if there were enough data related to an individual node that another idiom
would work better than a stacked bar chart, it would be very easy to swap out the bar chart
for something more relevant, while still maintaining the network aspect of the novel
visualisation.

Overall, my visualisation allows for the user to perceive the network data related to the
node alongside key information about the node in a clear and concise manner.

Credits

There were multiple times the course materials were used in my visualisation:

The layout for the entire implementation was loosely copied from the tutorial
answers

The file loadAndProcessData.js was initially copied from Sheet 4, Question 1,
although major changes were made to how this file works.

The file barchart.js was copied from sheet 5 question 1 and edited heavily to make
it work with my data. The implementation of stacked bars was notably not copied
from any of the course materials.

The file colourbar.js was copied from sheet 4 question 1 and had some minor
tweaks made.

o The implementation of the viridis gradient in the colour legend was based on
https://observablehg.com/@tmcw/d3-scalesequential-continuous-color-legend-

example

The force directed graph was heavily based on the force diagram available in the
course materials, although it was tweaked extensively.

o The implementation of draggable nodes was copied from
https://observablehqg.com/@d3/force-directed-graph-component

There were also many times | referenced stack overflow for help with certain bugs or
problems | was having. | usually didn’t directly copy the code, but the one time | copied an
answer extensively was with converting an object to an array, where | used the answer
from https://stackoverflow.com/questions/38824349/how-to-convert-an-object-to-an-array-
of-key-value-pairs-in-javascript

The code for the slider was copied from
https://www.w3schools.com/howto/howto_js_rangeslider.asp and modified to make sense

in the context of my program.

https://www.w3schools.com/howto/howto_js_rangeslider.asp
https://stackoverflow.com/questions/38824349/how-to-convert-an-object-to-an-array-of-key-value-pairs-in-javascript
https://stackoverflow.com/questions/38824349/how-to-convert-an-object-to-an-array-of-key-value-pairs-in-javascript
https://observablehq.com/@d3/force-directed-graph-component
https://observablehq.com/@tmcw/d3-scalesequential-continuous-color-legend-example
https://observablehq.com/@tmcw/d3-scalesequential-continuous-color-legend-example

	The Data
	Goals and Tasks
	Visualisation Design
	View One: Force Directed Graph
	View Two: Novel Visualisation/ Spider Graph

	Visualisation Principles
	Credits

